7. Übung zur Linearen Algebra II

Abgabe: Bis Mittwoch, 21.06.2006, 11:00 Uhr in die Briefkästen vor der Bibliothek.

7.1 Bestimmen Sie die Jordan-Normalform J von

$$A = \begin{pmatrix} -11 & -1 & 7 & 5 \\ -18 & 1 & 11 & 7 \\ -10 & -1 & 7 & 4 \\ -19 & -1 & 11 & 9 \end{pmatrix}$$

und geben Sie eine Transformationsmatrix T mit $J = T^{-1}AT$ an. (7 Punkte)

- **7.2** Sei $V = K^2$. Zeigen Sie:
 - (a) Die Abbildung $\langle \cdot, \cdot \rangle$ ist eine Bilinearform mit

$$\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 y_2 - y_1 x_2.$$

- (b) $\langle \cdot, \cdot \rangle$ ist nichtausgeartet, aber für jeden Vektor $v \in V$ gilt $\langle v, v \rangle = 0$. (2+2 Punkte)
- **7.3** Sei $\beta(x,y) = x^T A y$ eine symmetrische Bilinearform auf \mathbb{R}^2 mit A symmetrisch und $\det(A)$, Spur(A) > 0. Gilt dann $\beta(x,x) > 0$ für alle $x \neq 0$? Gilt die analoge Aussage auch für \mathbb{R}^3 ? (3+1 Punkte)
- **7.4** Sei $\beta(x,y)$ eine symmetrische Bilinearform auf \mathbb{R}^n , so dass $\beta(e_i,e_j) > 0$ für die Standard-Basisvektoren (e_1,\ldots,e_n) . Ist β dann positiv definit? (3 Punkte)
- **7.5** Sei B eine $n \times n$ Matrix über \mathbb{C} . Zeigen Sie, die Form $\beta(x,y) = x^T B^T \overline{By}$ ist genau dann hermitesch und positiv definit, wenn B invertierbar ist. (3 Punkte)