6. Übung zur Linearen Algebra II

Abgabe: Bis Mittwoch, 14.06.2006, 11:00 Uhr in die Briefkästen vor der Bibliothek.

6.1 Sei die folgende Matrix gegeben.

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 3 & -1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 & 1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

- (a) Bestimmen Sie das charakteristische Polynom von A.
- (b) Welche Eigenwerte hat A?
- (c) Geben Sie eine maximale Menge von linear unabhängigen Eigenvektoren von A an. Im folgenden seien die hier gefundenen Eigenvektoren mit v_1, v_2, \ldots bezeichnet.
- (d) Bestimmen Sie für den Eigenwert λ den Defekt $d_i := \dim \operatorname{Kern}(A \lambda E)^i$ für $0 \le i \le 5$.
- (e) Bestimmen Sie $s_i = 2d_i d_{i-1} d_{i+1}$ für $1 \le i \le 4$. (Die s_i geben die Anzahl der Jordanblöcke der Größe i an.)
- (f) Bestimmen Sie, soweit möglich, zu jedem Eigenvektor v_i aus (c) eine Kette von sogenannten Hauptvektoren $w_{i,j}$ mit

$$w_{i,1} = v_i \quad \text{ und } \quad w_{i,j} = (A - \lambda E) w_{i,j+1} \text{ für } j \geq 1.$$

- (g) Sei $T = (w_{1,1}, w_{i,2}, \dots, w_{2,1}, w_{2,2}, \dots, w_{i,1}, \dots)$ die aus den $w_{i,j}$ als Spalten gebildeten Matrix. Bestimmen Sie die Inverse von T und berechnen Sie $T^{-1}AT$.
- (h) Geben Sie die Jordan-Normalform von A an.
- (i) Geben Sie das Minimalpolynom von A an.

$$(3+1+4+4+1+5+3+1+2+1=25 \text{ Punkte})$$

6.2 Sei V ein endlich-dimensionaler komplexer Vektorraum und $\varphi \in \operatorname{Aut}(V)$ mit $\varphi^n = \operatorname{id}$ für ein n > 1. Zeigen Sie:

Es gibt eine Zerlegung $V = V_1 \oplus \cdots \oplus V_n$ mit $\varphi|_{V_j} : V_j \to V_j$ und $\varphi(v) = e^{j\frac{2\pi i}{n}}v$ für $v \in V_j$. (5 Punkte)

6.3 Zeigen Sie, dass die Matrix

$$\begin{pmatrix}
1 & 3 & 5 & 7 & 9 \\
2 & e & 0 & 0 & 0 \\
3 & 0 & 3 & 0 & 7 \\
4 & \pi & 0 & 4 & 6 \\
6 & 5 & 6 & 1 & 1
\end{pmatrix}$$

einen reellen Eigenwert besitzt, wobei e die Euler'sche Zahl und π die Kreiszahl bezeichnet. (2 Punkte)

- **6.4** Sei A, B quadratische Matrizen mit AB = BA. Zeigen Sie:
 - (a) Es gilt $(A+B)^n = \sum_{i=0}^n \binom{n}{i} A^i B^{n-i}$. (b) Ist B nilpotent mit $B^m = 0$, so gilt für $n \ge m$:

$$(A+B)^n = A^{n-m+1}(A+B)^{m-1}.$$

(3+2 Punkte)

6.5 Zeigen Sie, dass jede quadratische Matrix A ähnlich zu ihrer Transponierten A^T ist. (5 Punkte)

Hinweis

Wegen den Pfingsferien findet am 6. Juni (Pfingsdienstag) keine Vorlesung und keine Übungen statt. Die Abgabe dieses Blattes ist daher erst am Mittwoch, den 14.Juni.

Wir wünschen Ihnen Schöne Pfingsten!

Klausurtermin

Am Mittwoch, den 19. Juli von $15^{00} - 17^{30}$ Uhr findet die Klausur im Zuse-HS und in HS 1 (Max-Scheer-HS) statt.