

Julius-Maximilians-Universität Würzburg

Mathematisches Institut

Prof. Dr. H. Pabel PD Dr. Oliver Roth, Dr. Daniela Kraus, Ralf Winkler

Würzburg, den 23. November 2005

5. Übung zur Analysis I

Wintersemester 2005/06

17.) a.) Stellen Sie die folgenden komplexen Zahlen in der Form a+ib mit $a,b\in\mathbb{R}$ dar.

$$a_1$$
.) $(2+i)^3$ a_2 .) $\frac{(2+i)(3+2i)}{(1-i)}$.

b.) Zeigen Sie für $z, w \in \mathbb{C}$ die folgenden Rechengesetze:

$$b_1.$$
) $|z \cdot w| = |z| \cdot |w|$ $b_2.$) $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$ $b_3.$) $\overline{z + w} = \overline{z} + \overline{w}$.

c.) Es seien $a, z \in \mathbb{C}$ mit |a| < 1. Beweisen Sie:

$$\left| \frac{z - a}{1 - \bar{a}z} \right| < 1 \quad \Leftrightarrow \quad |z| < 1.$$

- 18.) Zeigen Sie: Es gibt auf $\mathbb C$ keine totale Ordnung "
" , welche mit den Operationen + und · verträglich ist, für welche also gilt
 - $a \le b \Rightarrow a + c \le b + c$ für alle $a, b, c \in \mathbb{C}$ und
 - $a \le b \Rightarrow ac \le bc$ für alle $a, b, c \in \mathbb{C}, c \ge 0$.

Hinweis: Verwenden Sie die Beziehung $i^2 = -1$.

19.) a.) Es sei X ein normierter Raum. Zeigen Sie die umgekehrte Dreiecksungleichung:

$$\forall_{x,y \in X} |x-y| \ge ||x|-|y||.$$

b.) Zeigen Sie, dass es sich bei der Abbildung $|\cdot|_1:\mathbb{R}^n\to\mathbb{R}$, definiert durch

$$\forall_{x=(x_1,\dots,x_n)\in\mathbb{R}^n} |x|_1 := |x_1| + \dots + |x_n|$$

um eine Norm auf dem \mathbb{R}^n handelt und skizzieren Sie die Menge

$$\tilde{B}_1(0) := \{ x \in \mathbb{R}^2 \mid |x|_1 \le 1 \}.$$

- 20.) Eine nichtleere Menge X heißt metrischer Raum, wenn auf ihr eine Metrik (Abstandsfunktion) $d: X \times X \to \mathbb{R}$ gegeben ist mit den Eigenschaften
 - $\forall_{x,y \in X} \qquad d(x,y) \geq 0 \, \wedge \, \left(d(x,y) = 0 \, \Leftrightarrow \, x = y\right)$ (M1) Positive Definitheit:

 - (M2) Symmetrie: $\forall_{x,y\in X}$ d(y,x) = d(x,y)(M3) Dreiecksungleichung: $\forall_{x,y,z\in X}$ $d(x,y) + d(y,z) \geq d(x,z)$.
 - a.) Es sei $(X, |\cdot|)$ ein normierter Raum. Zeigen Sie, dass dann X mit $\forall_{x,y \in X} \ d(x,y) :=$ |y-x| auch ein metrischer Raum ist.
 - b.) (Französische-Eisenbahn-Metrik) Sei $X = \mathbb{R}^2$. Zeigen Sie, dass es sich bei der Abbildung

$$d(x,y) \,=\, \left\{ \begin{array}{ll} |x-y| & \text{wenn } x = \lambda y \text{ für ein } \lambda \in \mathbb{R} \,, \\ |x| + |y| & \text{sonst} \,. \end{array} \right.$$

um eine Metrik auf dem \mathbb{R}^2 handelt.

Abgabe der schriftlichen Lösungen bis spätestens Mittwoch, den 30. November, 12:00 Uhr, in die richtigen Briefkästen neben der Mathe/Info-Teilbibliothek.